—0

@ ® Optimization Strategies £ o*>
. NRMA 1. e y "
‘ Work Sheet: 08-DA-01-WS]]frcspathshala

Bringing computational thinking to schools

Introduction:

Algorithms are ways to solve a problem and should be evaluated for speed, cost,
resource usage, and so on. Problem situations also often have constraints and algorithms
have to work within those. And accordingly, the performance goals of the algorithm
might differ too — it has to execute within so much time, or within so much memory.
There can be multiple ways to solve a problem and hence evaluation is important to
select the ‘optimal’ way given your constraints and / or goals.

The problems below require knowledge of for loop, if-else construct so please review
that before distributing the worksheets.

Questions: (* questions can be used for evaluation)

1. Teacher has to group 300 students for a picnic as follows. Girls more than 14 years
don’t need bus, 12-14 years and living within 5 kms radius don’t need bus but more
than that do. Girls under 12 need the bus, as do boys under 12. Boys 12 years or
more do not need the bus. Teacher writes a program to do the classification as
below:

For each student

If it is a girl
If she is > 14 years
Need_bus = false
End if

If she is >= 12 and < 14 years

If she is living within 5 kms
Need_bus = false
Else

Need bus = true

End if
End if

If she is < 12 years
Need bus = true
End if
End if

If it is a boy

If he is < 12 years
Need bus = true
End if

If he is >= 12 years

Need_bus = false

End if

End if

End-for-loop

Name: Class: Div: Roll. No:

&

Optimization Strategies P :
® - 0%.DA-01. G
L@.H Work Sheet: 08-DA-01-WS]][fCSDathSh 5

Bringing computational thinking to schools

Assume that it is costly to execute ‘if’ statements. Can you optimize the algorithm
to use fewer ‘ifs’ and also using ‘else’ where appropriate?

Name: Class: Div: Roll. No:

‘ @ @ Optimization Strategies

Work Sheet: 08-DA-01-WS

-

."]]frf:.sDathshala

Bringing computational thinking to schools

2. Aresearcher has to produce data on how often the 3 letters b, m and p occur in
English text. He is given hundreds of pieces of long text. He must scan each piece,
and keep updating the overall occurrence % of these vowels. He writes this

Name:

algorithm:
For each piece of text
For each letter in the text
If letter = b, then countb++
End-for-loop
pc_b = (countb / length of text) X 100
overall_b =[overall_b +pc_b]/2
For each letter in the text
If letter = m, then countm++
End-for-loop
pc_m = (countm / length of text) X 100
overall_m = [overal_m + pc_m] /2
For each letter in the text
If letter = p, then countp++

End-for-loop

pc_p = (countp / length of text) X 100
overall_p =[overall_p + pc_p]/2
End-of-for-loop

a) Can you evaluate if this algorithm is optimally written and optimize it?
b) Asthe algorithm executes, can it teach itself which letter to look for first so as

to optimize execution?

Class:

Div:

Roll. No:

@ Optimization Strategies
L@.H Work Sheet: 08-DA-01-WS

ANSWER SHEET
1. Rewritten algorithm with 4 ifs instead of 8
For each student

If <12 years old
Need bus = true

Else if boy
Need_bus = false

Else
/** so we reach here if it is a girl >= 12 years

Name: Class: Div:

&

s
]]frcsDathshaIa

Bringing computational thinking to schools

Roll. No:

-

@ ® Optimization Strategies s 'l
. 02.A (1. L QYR S
‘ Work Sheet: 08-DA-01-WS]]frcspathshala

Bringing computational thinking to schools

Need_bus = true
If she is > 14 years
Need_bus = false
Else if she is living within 5 kms
Need bus = false
End if
End if
End-for-loop

2. First modification: We are going through a piece of text 3 times — once for each
letter. Instead we should go through it only once and check all 3 letters one after
the other.

For each piece of text
For each letter in the text

If letter = p, then countp++

Else if letter = b, then countb++

Else if letter = m, then countm++
End-for-loop
pc_p = (countp / length of text) X 100; overall_p = [overall_p + pc_p]/ 2
pc_b = (countb / length of text) X 100; overall_b = [overall_b + pc_b] /2
pc_m = (countm / length of text) X 100; overall_m = [overall_m + pc_m] /2
End-of-for-loop

Second modification:

Inside the loop we are checking first for b, then m, then p. Note that the first ‘if’ executes
for every letter, the second for every letter except the b’s, and the third ‘if’ for every
letter except the b’s and the m’s. So, in English, if p occurs the most often, we are
unnecessarily checking b first, then m, and then p! So we create a list of 3 entries that
tells us in which order to check the letters. We re-arrange the list after every piece of text
we evaluate. We could even do that after every 5 or 10 pieces if we want.

Name: Class: Div: Roll. No:

-

@ ® Optimization Strategies s 'l
02 A (1. L QYR S
‘ Work Sheet: 08-DA-01-WS]]frcspathshala

Bringing computational thinking to schools

/* create a 3-item list. Each item has a letter, a count, a pc and an overall. */

list(1).letter = b; list(1).count = 0; list(1).pc = O; list(1).overall =0

list(2).letter = m; list(2).count = 0; list(2).pc = 0; list(2).overall =0

list(3).letter = p; list(3).count = 0; list(3).pc = 0; list(3).overall =0
For each piece of text

Forl=1to3
list(i).count = O; list(i).pc =0
End-for-loop
For each letter in the text
Forl=1to3
If letter = list(i).letter then list(i).count++
End-for-loop
End-for-loop
Forl=1to3

List(i).pc = [list(i).count/length-of-text] X 100
List(i).overall = [list(i).overall + list(i).pc] / 2
End-for-loop
If list[1].overall < list[2].overall then swap-list-item-1-and-2
If list[1].overall < list[3].overall then swap-list-item-1-and-3
If list[2].overall < list[3].overall then swap-list-item-2-and-3
End-of-for-loop

Name: Class: Div: Roll. No:

